Crosstalk between glioma-initiating cells and endothelial cells drives tumor progression.
نویسندگان
چکیده
Glioma-initiating cells (GIC), which reside within the perivascular microenvironment to maintain self-renewal capacity, are responsible for glioblastoma initiation, progression, and recurrence. However, the molecular mechanisms controlling crosstalk between GICs and endothelial cells are poorly understood. Here, we report that, in both GICs and endothelial cells, platelet-derived growth factor (PDGF)-driven activation of nitric oxide (NO) synthase increases NO-dependent inhibitor of differentiation 4 (ID4) expression, which in turn promotes JAGGED1-NOTCH activity through suppression of miR129 that specifically represses JAGGED1 suppression. This signaling axis promotes tumor progression along with increased GIC self-renewal and growth of tumor vasculature in the xenograft tumors, which is dramatically suppressed by NOTCH inhibitor. ID4 levels correlate positively with NOS2 (NO synthase-2), HES1, and HEY1 and negatively with miR129 in primary GICs. Thus, targeting the PDGF-NOS-ID4-miR129 axis and NOTCH activity in the perivascular microenvironment might serve as an efficacious therapeutic modality for glioblastoma.
منابع مشابه
Tumor and Stem Cell Biology Crosstalk between Glioma-Initiating Cells and Endothelial Cells Drives Tumor Progression
Glioma-initiating cells (GIC), which reside within the perivascular microenvironment tomaintain self-renewal capacity, are responsible for glioblastoma initiation, progression, and recurrence. However, the molecular mechanisms controlling crosstalk between GICs and endothelial cells are poorly understood. Here, we report that, in both GICs and endothelial cells, platelet-derived growth factor (...
متن کاملCrosstalk between Tumor Cells and Immune System Leads to Epithelial-Mesenchymal Transition Induction and Breast Cancer Progression
Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, imm...
متن کاملModelling Tumor-induced Angiogenesis: Combination of Stochastic Sprout Spacing and Sprout Progression
Background: Angiogenesis initiated by cancerous cells is the process by which new blood vessels are formed to enhance oxygenation and growth of tumor. Objective: In this paper, we present a new multiscale mathematical model for the formation of a vascular network in tumor angiogenesis process. Methods: Our model couples an improved sprout spacing model as a stochastic mathematical model of spro...
متن کاملP157: Periostin Recruits Tumor Associated Macrophages in Glioblastoma Multiform
Glioblastoma multiform (GBM) is the most common and lethal type of primary brain tumors with high rates of morbidity and mortality. Treatment options are limited and ineffective in most of the cases. Epidemiological studies have shown a link between inflammation and glioma genesis. In addition, at the molecular level, pro-inflammatory cytokines released from activated microglia can increa...
متن کاملTie2/TEK Modulates the Interaction of Glioma and Brain Tumor Stem Cells with Endothelial Cells and Promotes an Invasive Phenotype
Malignant gliomas are the prototype of highly infiltrative tumors and this characteristic is the main factor for the inevitable tumor recurrence and short survival after most aggressive therapies. The aberrant communication between glioma cells and tumor microenvironment represents one of the major factors regulating brain tumor dispersal. Our group has previously reported that the tyrosine kin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 74 16 شماره
صفحات -
تاریخ انتشار 2014